
CONFLUX
TECHNICAL PRESENTATION

By Conflux in 2020



W
W

W
.C

O
N

F
L

U
X

-C
H

A
IN

.O
R

G

2

Table of Contents

Conflux Main Ideas & Architecture

2. Conflux Algorithm: Design & Explanation

3. Safety against Double Spending Attacks

4. Robustness against Liveness Attacks

5. Challenges and Solutions on System Level

1. One Observation of Blockchain Consensus

6. Evaluation of Conflux



W
W

W
.C

O
N

F
L

U
X

-C
H

A
IN

.O
R

G

3

Conflux Main Ideas 

- Organize blocks as a novel consensus algorithm 

- Extend the consensus of a chain to the consensus of a total order of all blocks in the Conflux Algorithm

Blockchain transactions rarely conflict

Conflux exploits this to optimistically process concurrent blocks:

Conflux achieves thousands of transactions per seconds and < 30 seconds confirmation time with confidence as 6 
blocks in Bitcoin

The bottleneck of performance is no longer at the consensus layer!



W
W

W
.C

O
N

F
L

U
X

-C
H

A
IN

.O
R

G

4

Conflux Architecture

Blocks are organized in Conflux 
Algorithm state instead of chain 
state

Consensus on the total order of 
all blocks guaranteed by Conflux 
Algorithm

Each miner runs block generator to pack and valid new blocks

Miners and users propagate 
transactions via gossip network

Each miner maintains a pool of 
pending transactions



Conflux
ONE OBSERVATION OF 
BLOCKCHAIN CONSENSUS



W
W

W
.C

O
N

F
L

U
X

-C
H

A
IN

.O
R

G

6

One Observation (1/2) 
Bitcoin Does not Support Concurrent Blocks
Bitcoin enforces a very restrictive transaction total order at the generation time of each block:

Block1… Block0

Block2

Block1: My transactions need to follow Block0!

Block2: My transactions need to follow Block0!



W
W

W
.C

O
N

F
L

U
X

-C
H

A
IN

.O
R

G

7

One Observation (2/2) 
Bitcoin does not Support Concurrent Blocks

… Block0

Block2 Block3 Block4 Block5

Case2: Block2 survives and its order becomes the final transaction history, Block1 is discarded!

Block1… Block0

Block2

Block3 Block4 Block5

Case1: Block1 survives and its order becomes the final transaction history, Block2 is discarded!



W
W

W
.C

O
N

F
L

U
X

-C
H

A
IN

.O
R

G

8

Blockchain Transactions Rarely Conflict 
How to Improve the Efficiency of Transactions? 

Block1… Block0

Block2

Conflux organizes blocks in a Tree Graph (Conflux Algorithm)

Blockchain transactions rarely conflict with each other and they can be serialized in any order

Why not processing non-conflicting transactions in concurrent blocks?



Conflux
CONFLUX ALGORITHM: 
DESIGN & EXPLANATION



W
W

W
.C

O
N

F
L

U
X

-C
H

A
IN

.O
R

G

10

How to Determine the Total Order of all Blocks in Conflux 
Algorithm（1/3）

Each block has one outgoing parent edge to its parent block
parent edges would form a tree structure

Genesis

Tx0
Tx1

A

Tx2

B

Tx3
Tx4

G
Tx4

C

D

E

F

H

J I K

Parent edgesTx0: Mint 10 coins to X

Tx1: Mint 10 coins to Y

Tx2: X sends 8 to Y

Tx3: X sends 8 to Z

Tx4: Y sends 8 to Z



W
W

W
.C

O
N

F
L

U
X

-C
H

A
IN

.O
R

G

How to Determine the Total Order of all Blocks in Conflux 
Algorithm（2/3）

Tx0: Mint 10 coins to X

Tx1: Mint 10 coins to Y

Tx2: X sends 8 to Y

Tx3: X sends 8 to Z

Tx4: Y sends 8 to Z

Parent edges

Each block may have multiple ref. edges, 
Ref. edges simply indicate the “happen-before” relationships

Ref. edges
E admits that D is generated before E

Genesis

Tx0
Tx1

A

Tx2

B

Tx3
Tx4

G
Tx4

C

D

E

F

H

J I K

11



W
W

W
.C

O
N

F
L

U
X

-C
H

A
IN

.O
R

G

How to Determine the Total Order of all Blocks in Conflux 
Algorithm（3/3）

Step 1 Determine a pivot chain of blocks based on parent edges,
those blocks are partially ordered

Step 2 Extend the pivot chain partial order to a total order of all 
blocks based on the ref. edges

Deterministically define the total order of blocks in Conflux

Tx0: Mint 10 coins to X

Tx1: Mint 10 coins to Y

Tx2: X sends 8 to Y

Tx3: X sends 8 to Z

Tx4: Y sends 8 to Z

Parent edges
Ref. edges

Genesis

Tx0
Tx1

A

Tx2

B

Tx3
Tx4

G
Tx4

C

D

E

F

H

J I K

12



W
W

W
.C

O
N

F
L

U
X

-C
H

A
IN

.O
R

G

Consensus of the Pivot Chain in Conflux

1. Start from the Genesis block

2. Iteratively advance to the heaviest branch – heterogeneous block weight by GHAST rule

Pivot chain selection by modified GHOST Rule [Sompolinsky et. al., ICFCDS’15]:

Genesis
Tx0
Tx1

A
Tx2

B
Tx3
Tx4

G
Tx4

C

D

E

F

H

J I K

Subtree A has 6 nodes

Subtree B has 5 nodes

Tx0: Mint 10 coins to X

Tx1: Mint 10 coins to Y

Tx2: X sends 8 to Y

Tx3: X sends 8 to Z

Tx4: Y sends 8 to Z

Ref. edges
Parent edges

Why not applying the longest chain rule to select the Conflux pivot chain?

Even forked blocks are counted in the selection of every branch, which guarantees that the attacker always need >50% power to revert the pivot chain.

13



W
W

W
.C

O
N

F
L

U
X

-C
H

A
IN

.O
R

G

How to Compose a New Block in Conflux?

Tx0: Mint 10 coins to X

Tx1: Mint 10 coins to Y

Tx2: X sends 8 to Y

Tx3: X sends 8 to Z

Tx4: Y sends 8 to Z

Parent edges
Ref. edges

Genesis
Tx0
Tx1

A
Tx2

B
Tx3
Tx4

G
Tx4

C

D

E

F

H

J I K

New Block

Why both kinds of edges are necessary?

Indeed, the parent edge can be computed even if there is only one kind of ref. edges. However, explicit listing all parent edges allows 
a much more efficient implementation of Conflux Algorithm.

Step 1 Select the last block in 
the pivot chain as parent

Step 2 Create reference edges to all other unreferenced 
blocks, e.g. blocks without any incoming edge

Rules for generating a new block:

14



W
W

W
.C

O
N

F
L

U
X

-C
H

A
IN

.O
R

G

Extending Partial Order to Total Order of All Blocks（1/2）
The rules of partitioning blocks into epochs:

D belongs to the epoch of E, because D happens before E but 
does not happen before C

Tx0: Mint 10 coins to X

Tx1: Mint 10 coins to Y

Tx2: X sends 8 to Y

Tx3: X sends 8 to Z

Tx4: Y sends 8 to Z

Parent edges
Ref. edges

Genesis
Tx0
Tx1

A
Tx2

B
Tx3
Tx4

G
Tx4

C

D

E

F

H

J I K

Epoch of 
Genesis Epoch of A Epoch of C Epoch of E Epoch of H

1. Each pivot chain block forms one epoch

2. Every non-pivot block belongs to the first epoch whose pivot block admits to be generated after it

15



W
W

W
.C

O
N

F
L

U
X

-C
H

A
IN

.O
R

G

Extending Partial Order to Total Order of All Blocks（2/2）
The rules of ordering all blocks with respect to their epochs :

1. Order based on epoch first – blocks in earlier epochs always precede blocks in later epochs

2. Topologically sort blocks inside each epoch, according to the “happen-before” relations

3. Break ties deterministically based on Block ID

Block Total Order: Genesis, A, B, C, D, F, E, G, J, I, H, K
Tx0: Mint 10 coins to X

Tx1: Mint 10 coins to Y

Tx2: X sends 8 to Y

Tx3: X sends 8 to Z

Tx4: Y sends 8 to Z

Parent edges
Ref. edges

Genesis
Tx0
Tx1

A
Tx2

B
Tx3
Tx4

G
Tx4

C

D

E

F

H

J I K

Epoch of 
Genesis Epoch of A Epoch of C Epoch of E Epoch of H

16



W
W

W
.C

O
N

F
L

U
X

-C
H

A
IN

.O
R

G

Total Order of Blocks to Total Order of Transactions
Total order of blocks ⇒ total order of transactions
Only need to discard conflict and duplicate transactions

Tx0: Mint 10 coins to X

Tx1: Mint 10 coins to Y

Tx2: X sends 8 to Y

Tx3: X sends 8 to Z

Tx4: Y sends 8 to Z

Parent edges
Ref. edges

Genesis, A, B, C, D, F, E, G, J, I, H, K

Tx0, Tx1, Tx2, Tx3, Tx4, Tx4

Conflict Duplicate

Genesis
Tx0
Tx1

A
Tx2

B
Tx3
Tx4

G
Tx4

C

D

E

F

H

J I K

Epoch of A Epoch of C Epoch of E Epoch of H

17



Conflux
SAFETY AGAINST DOUBLE 
SPENDING ATTACKS



W
W

W
.C

O
N

F
L

U
X

-C
H

A
IN

.O
R

G

Why Conflux is Safe Against Double Spending Attacks

Claim1: 
an attacker cannot revert a transaction unless he/she reverts the Pivot Chain

Claim2:
an attacker cannot revert the Pivot Chain unless he/she controls 50% block generation 
power

Necessary
Condition

Necessary
Condition

Succeeding in 
Double Spending Attack

Reverting
the Pivot Chain

More than 50% malicious 
block generation power

19



W
W

W
.C

O
N

F
L

U
X

-C
H

A
IN

.O
R

G

Claim 1: an Attacker Cannot Revert a Transaction without 
Reverting the Pivot Chain (1/2)

Tx0: Mint 10 coins to X

Tx1: Mint 10 coins to Y

Tx2: X sends 8 to Y

Tx3: X sends 8 to Z

Tx4: Y sends 8 to Z

Parent edges
Ref. edges

In order to double spend Tx2 (in block A), an attacker may refer the genesis block as parent and expects that the malicious block (Attack A) 
precedes A in the total order

How could an attacker possibly revert Tx2?

Genesis
Tx0
Tx1

A
Tx2

B
Tx3
Tx4

G
Tx4

C

D

E

F

H

J I K

Epoch of 
Genesis Epoch of A Epoch of C Epoch of E Epoch of H

Attack A

20

Genesis, A, B, C, D, F, E, G, J, I, H, K

Attacker’s Block



W
W

W
.C

O
N

F
L

U
X

-C
H

A
IN

.O
R

G

Claim 1: an Attacker Cannot Revert a Transaction without 
Reverting the Pivot Chain (2/2)
However, as long as the pivot chain is not reverted, the malicious block (Attack A) must belong to a later epoch; so that the attacker cannot 
double spend Tx2

Tx0: Mint 10 coins to X

Tx1: Mint 10 coins to Y

Tx2: X sends 8 to Y

Tx3: X sends 8 to Z

Tx4: Y sends 8 to Z

Parent edges
Ref. edges

Genesis
Tx0
Tx1

A
Tx2

B
Tx3
Tx4

G
Tx4

C

D

E

F

H

J I K

Epoch of 
Genesis Epoch of A Epoch of C Epoch of E Epoch of H

New 
Block

Attack A

Epoch of 
New Block

As long as Attack B does not get on the pivot chain, 
it belongs to a very late epoch

21



W
W

W
.C

O
N

F
L

U
X

-C
H

A
IN

.O
R

G

Claim 2: an Attacker Cannot Revert the Pivot Chain unless 
he/she Controls 50% Block Generation Power

…

A

A’ Subtree of A’

Blocks from honest 
participants

Blocks from the 
attacker

Subtree of A

How to revert an old block:

Suppose to revert a pivot chain block A

Honest participants may create small forks but always under the subtree of A

Attacker needs at least 50% block generation power to make subtree of A’ heavier than A

22



W
W

W
.C

O
N

F
L

U
X

-C
H

A
IN

.O
R

G

Why 50% Power is Necessary to Revert the Pivot Chain

Chance of A’ outgrowing A after time t is less than:

…
A Subtree of A

A’ Subtree 
of A’

A has 𝑛 blocks at time 𝑡 − 𝑑

A’ has 𝑚 blocks at time 𝑡

𝑞 (𝑞 < 1) is the ratio of the attacker’s 
block generation power comparing to 
honest participants

𝑑 is the network delay

23
𝜆- is the block generation rate of
honest participants.



W
W

W
.C

O
N

F
L

U
X

-C
H

A
IN

.O
R

G

Conflux Confirmation Rules

- The power of attacker – 𝑞
- The tolerable risk of a transaction being reverted -- 𝑟

Conflux’s confirmation is designed base on extensive precise safety analysis

User specifies the security parameter:

Find the epoch where the transaction is first processed

Find the pivot chain block of the epoch

Check whether the overall risk of some previous pivot chain block being reverted is tolerable

24



Conflux
ROBUSTNESS AGAINST
LIVENESS ATTACKS



W
W

W
.C

O
N

F
L

U
X

-C
H

A
IN

.O
R

G

Why GHOST Rule is Vulnerable under Liveness Attacks 

- The attacker controls network delay and has little block generation power

- Honest participants are partitioned into two comparable groups with significant delay in between

- The attacker will be able to balance the weight of two branches A and B such that no block can be confirmed forever!

G

A

Honest 
Group A

Honest 
Group B

Maximum 
delay of d

AttackerA AttackerA

AttackerB AttackerB

A A A A A A

B B B B B B B

26



W
W

W
.C

O
N

F
L

U
X

-C
H

A
IN

.O
R

G

GHAST – Greedy Heaviest Adaptive SubTree（1/3）

- no attack: low difficulty blocks ⇒ fast confirmation (<1 min)

- active attack: high difficulty blocks ⇒ fast recovery (≤30 min)

Adaptive block weight for tradeoffs between performance and safety

Consensus throughput uninfluenced in both cases

27



W
W

W
.C

O
N

F
L

U
X

-C
H

A
IN

.O
R

G

GHAST – Greedy Heaviest Adaptive SubTree（2/3）
The block weight is adaptively determined by its past :

1. Weight is 1 in the normal case

2. Weight is adapted in case there is an observable liveness attack

• All honest participants will agree on the heterogenous weights

• Even in the presence of attackers!

Is the past sub-graph 
stable enough?

• Yes: Assign weight 1

• No: Assign weight ℎ for
1/ℎ blocks, while other blocks 
have 0 weight

28



29

W
W

W
.C

O
N

F
L

U
X

-C
H

A
IN

.O
R

G

GHAST – Greedy Heaviest Adaptive SubTree（3/3）
For example

1. H observes two-subtrees with balanced weight

2. H has high weight if it has a much harder PoW quality (e.g. h times of usual difficulty), and it has zero weight otherwise

Genesis
Tx0
Tx1

A
Tx2

B
Tx3
Tx4

G
Tx4

C

D

E

F

H

J I

Epoch of 
Genesis Epoch of A Epoch of C Epoch of E Epoch of H

Parent edges
Ref. edges



Conflux
CHALLENGES AND SOLUTIONS 
ON SYSTEM LEVEL



W
W

W
.C

O
N

F
L

U
X

-C
H

A
IN

.O
R

G

How to Store the Transactions under a High TPS.

31

B B B B B B B B……

Recent blocksBlocks earlier than 1 month ago

Note: To make the figure clear, we skim the non-pivot block here.

Light nodes
(For clients)

Full nodes
(For consensus)

Archive nodes
(For storage)

Only store block headers Only store block headers

Only store block headers Store transactions and ledger states

Store transactions and ledger
states

Store transactions and ledger states

Bitcoin has <7TPS and accumulates <300 GB data in ten years. However, Conflux has >3000 TPS, how to store the
transaction data?

We use archive nodes specially for storing data. Full nodes store the header for all blocks so they can check the 
correctness of data from archive nodes.



W
W

W
.C

O
N

F
L

U
X

-C
H

A
IN

.O
R

G

Decoupling Consensus Protocol with Transaction Execution

32

In Ethereum, when an honest node received a new block, it needs to execute the transaction in this block and check
the validity of state root before appending it to the blockchain.

However, such solution incurs a large amount of computation tasks in a blockchain protocol with a high generation
rate like Conflux.

We decouple the consensus protocol with a transaction execution. When an honest node received a new block, it
doesn’t care about the validity of the state root before incorporating it into tree-graph structure.

A block in pivot chain may contain an incorrect state root. We propose blaming mechanism to handle it.

The tail of pivot chain may change frequently, so we propose deferred execution.



W
W

W
.C

O
N

F
L

U
X

-C
H

A
IN

.O
R

G

Blaming Mechanism (1)

33

A

A is a malicious block.
A contains incorrect
state root.

B

B is a child of A
B is an honest block.
B blames A because it
has incorrect state root.

D

D is a malicious block.
D contains incorrect state
root.

E

E is a child of D
E is a malicious block.
E doesn’t blame D.
E contains correct state root

C is a child of B
C is an honest block.
C doesn’t blame B and agree
with B’s opinion (A is wrong).

C

F

F is a child of E
F is an honest block.
F blames E and D because D
has incorrect state root and E
doesn’t blame D.



W
W

W
.C

O
N

F
L

U
X

-C
H

A
IN

.O
R

G

Blaming Mechanism (2)

34

B

By blaming mechanism, each block receives votes from its subtree blocks. And we can decide the correctness of block B.



W
W

W
.C

O
N

F
L

U
X

-C
H

A
IN

.O
R

G

Deferred Execution (1)

35

StateRoot

StateRoot

TX1

TX2

Order1: TX1, TX2

- Parity Merkle-Tree db throughput about 3000 tps

Execution budget is very tight

Storage access could potentially be next bottleneck

- The tail of pivot chain may change frequently and thus change the block order.

- Naïve state root maintenance leads to dup execution

Pivot chain needs time to converge



W
W

W
.C

O
N

F
L

U
X

-C
H

A
IN

.O
R

G

Deferred Execution (1)

36
Order2: TX1, TX3, TX2, TX4

Order1: TX1, TX2

TX2 executes twice!

- Parity Merkle-Tree db throughput about 3000 tps

Execution budget is very tight

Storage access could potentially be next bottleneck

- The tail of pivot chain may change frequently and thus change the block order.

- Naïve state root maintenance leads to dup execution

Pivot chain needs time to converge

StateRoot

TX1

StateRoot

TX3

StateRoot

TX2

StateRoot

TX4



W
W

W
.C

O
N

F
L

U
X

-C
H

A
IN

.O
R

G

Deferred Execution (2)

37

TX2 only executes once at
the time receiving C.

K-deferred execution only executes to generate state root when pivot block will probably not change

A

Defer-Root

TX1

B

Root of A

TX3

E

Root of A

TX2

C

Root of B

TX4

D

Root of C

TX5



W
W

W
.C

O
N

F
L

U
X

-C
H

A
IN

.O
R

G

Reduce Bandwidth Overhead in Transaction Dissemination (1)

38

TX1

A full node

A transaction
(100 Byte)

It is redundant to push the same transaction to one node multiple times.

TX1

TX1

TX1 TX1

TX1



W
W

W
.C

O
N

F
L

U
X

-C
H

A
IN

.O
R

G

Reduce Bandwidth Overhead in Transaction Dissemination (2)

39

Push hash value instead of the whole transaction, and let the receiver requests the transaction in needed.
But it still costs too much bandwidth.

ID1

A full node

Hash value of
the transaction
(32 Byte)

TX1
A transaction
(100 Byte)

TX1

TX1

TX1 TX1

TX1

ID1

ID1

ID1ID1

ID1



W
W

W
.C

O
N

F
L

U
X

-C
H

A
IN

.O
R

G

Reduce Bandwidth Overhead in Transaction Dissemination (3)

40

A shorter hash value may be helpful. But two different transactions may have the same short id. So the receiver falsely thinks it has received tx2.

SID1

A full node

Short Hash value
of the transaction
(4 Byte)

TX1
A transaction
(100 Byte)

and

have the same short

hash value

TX1 TX2

SID1

TX1

TX1

TX1 TX1

TX2

TX2

SID1

SID1

SID1SID1

SID1



W
W

W
.C

O
N

F
L

U
X

-C
H

A
IN

.O
R

G

Reduce Bandwidth Overhead in Transaction Dissemination (4)

41

Let each node share a random seed s with each peer.
Each node not only sends short hash value SID1, but also computes a random byte R from tx and s.
So the receiver will not loss transactions even if two transactions have the same short hash value.

SID1

Random byte
of the transaction
(1 Byte)

Short Hash value
of the transaction
(3 Byte)

TX1
A transaction
(100 Byte)

A full node

R
TX1

TX1

TX1 TX1

TX2

R R

R

R

TX2 R

SID1

SID1SID1

SID1

SID1

TX2



Conflux
EVALUATION OF
CONFLUX



W
W

W
.C

O
N

F
L

U
X

-C
H

A
IN

.O
R

G

Environment and Objective of Experiments

12k full nodes on Amazon EC2

Each full node with bandwidth limited to 20Mbps

Different configurations (block size/block interval/etc.)

Throughput, confirmation latency and network delay

43



W
W

W
.C

O
N

F
L

U
X

-C
H

A
IN

.O
R

G

Globally Distributed Experimental Nodes

44



W
W

W
.C

O
N

F
L

U
X

-C
H

A
IN

.O
R

G

High Consensus Throughput – New Achievements !

• 300 KB block / 0.25s

• 4.2 GB/h (9.38 Mbps) 

• 4700 TPS in theory

Conflux achieves consensus throughput at:

• Bitcoin: 6 MB/h (12 MB/h with SegWit2x), 3~7 TPS

• Ethereum: 20~30 MB/h, ~20 TPS

• Algorand: 750 MB/h, 1000 TPS

Consensus throughput of other mainstream projects:

- comparable experimental environment (10k nodes)

45



W
W

W
.C

O
N

F
L

U
X

-C
H

A
IN

.O
R

G

Nearly Optimal Confirmation Time

Confirmation latency
less than 1 minute 
with high confidence
(equivalent to 6 blocks in BTC)

Best performance
over all PoW-based
consensus systems

46



W
W

W
.C

O
N

F
L

U
X

-C
H

A
IN

.O
R

G

Beyond High Consensus Throughput

- new implementation of Merkle Patricia Tree

- Tree-Graph structured with Link-Cut Trees

- Deferred Execution

New techniques for extreme end-to-end efficiency

1392 TPS (Historical Ethereum transactions with contracts and dependency)

3480 TPS (14% Ethereum transactions + 86% Random transactions)

47



W
W

W
.C

O
N

F
L

U
X

-C
H

A
IN

.O
R

G

Defending Liveness Attacks with GHAST
80-page rigorous mathematical proof of safety and liveness

Detecting and resolving liveness attacks within half an hour

- even less than the normal confirmation time of Bitcoin

48



W
W

W
.C

O
N

F
L

U
X

-C
H

A
IN

.O
R

G

Related Works

Resolve tx. conflicts at 
block generation:

Decentralized Reduced 
Participation

Bitcoin, 
Ethereum

Algorand
[SOSP’17] BitcoinNG

[NSDI’16]
Hybrid Consensus 

[Pass and Shi], 
Byzcoin [USENIX 

Sec’16]

Stellar

PBFT [OSDI’99]
Libra

HoneyBagger
[CCS’16]

Optimistically process blocks; 
lazily resolve tx. conflicts:

Conflux

Conflux exploits the fact that the 
blockchain transactions rarely conflict with 

each other. 

49



THANKS!
www.conflux-chain.org


